
Defence nationale UNCLASSIFIED

UNLIMITED
........ * . .......... **ee** DISTRIBUTION

*e e e e ee t e e ee ee e
D:*E S.:

eg ooooee 55o5oe Coeoeeeo@oo

:-SUFFIELD MEMORANDUM-

NO. 1348

FINITE DIFFERENCE FORM OF THE COMPRESSIBLE

BOUNDARY LAYER EQUATIONS IN GENERALIZED

CURVILINEAR COORDINATES

by

DTIC
S ELECTE !

Denis Bergeron JAN 2 3 1991 fl
EU

December 1990

DEFENCE RESEARCH ESTABLISHMENT SUFFIELD, RALSTON. ALBERTA

nf his nfoion is pr to

oqnition 1 opravak Z ilt

%.m1 j



UNCLASSIFIED

Defence Research Establishment Suffield
Ralston, Alberta

Suffield Memorandum No. 1348

Finite Difference Form of the Compressible Boundary
Layer Equations in Generalized Curvilinear Coordinates

Accession For

by DTIC TAB
Uamnounced 0
justification

Distribut ion/
Denis Bergeron Avalablity Codes

Avail and/or
Dist Special

4 40

~WARNING
'The use Of this information is permitted subject to

recognition of proprietary and patent rights'.

UNCLASSIFIED



UNCLASSIFIED

ABSTRACT

This paper presents the development of a finite difference form of the unsteady boundary layer
equations for twofdimensional flow. The equations are written in body-conformal coordinates,
non-dimensionalized, transformed to a generalized curvilinear coordinate system, and expanded
to yield equations suitab!e? fcr use in a tridiagonal solver. The boundary conditions are also presented. (

This work, done in cooperation with the University of Toronto, seeks the development of a boun-
dary layer code compatible with the NASA Ames ARC2D Navier-Stokes code. The two codes will
be used in a study of the Fortified Navier-Stokes concept.

RESUME

Cette communication porte sur le d~veloppement d'une forme aux differences finies des 6qua-
tions des couches limites instables dans les 6coulements bidimensionnels. Les 6quations sont ex-
primes en cootdonn~es conformes au corps tudi, sans dimension, sont transform~es en un systeme
de coordonn~es curvilin aires gn6ralis~es et sont d~velopp~es en 6quations applicables A un r~solveur
tridiagonal. Les conditions aux limites sont aussi pr(sent(es.

Ce travail, men6 en collaboration avec l'Universit6 de Toronto, vise A 6laborer un programme de
couche limite compatible avec le programme Navier-Stokes ARC2D mis au point par I'Ames pour
la NASA. Les deux programmes serviront A 6tudier le concept fortifi6 de Navier-Stokes.

i
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NOMENCLATURE

A,B,C,D Coefficients of tridiagonal system of equations
a Speed of sound
cp Coefficient of specific heat at constant pressure
H Total enthalpy, H = c, + u2 /2
1 Reference length
M Mach number, M = u /a
p Pressure
Pr Prandtl number, Pr = WcplK
R Gas constant
Re Ratio of freestream Reynolds and Mach numbers, Re = p.*la. /A**
S1  Constant used in Sutherland's approximation for viscosity
t Time-like variable used to relax the equations
T Absolute temperature
u,v Body-conformal velocity components
U, V, W Contraviariant velocity components
x,y Body-conformal coordinates
X, Y Cartesian coordinates

Greek Symbols

a Convective coefficient, a = pU
y Ratio of specific heat at constant pressure to specific

heat at constant volume
Ic Coefficient of thermal conductivity
t Viscosity

p Density
Ir Shear stress, t = g(Du / y)
4,11 Curvilinear coordinates

iv
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Subscripts

()0 Reference conditions in Sutherland's approximation
( ). Freestream values
()j, ( )k Dummy spacial indices

Value at a solid boundary (wall)
)WC Value at the wake centerline

Superscripts

(C) Non-dimensionalized value
()n Dummy time index

V
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INTRODUCTION

Background

Throughout the Computational Fluid Dynamics community, two approaches to the numerical
simulation of viscous flow have gained popularity: the Interactive Boundary Layer (IBL)
approach and the Navier-Stokes approach.

IBL methods solve separate inviscid and viscid solutions, which influence each other throught an
interaction algorithm. The interaction is allowed to continue until continuity of the velocity and
temperature profiles is achieved at an interface boundary, usually the boundary layer edge.
Numerical implementation of the method involves coding of separate solution algorithms for the
inviscid and viscid regions, each based on specialized equations which approximate the Navier-
Stokes equations under the conditions prevailing in that region. The viscous method also
requires special adaptations for separated flow regions, where the boundary layer equations must
be solved in inverse mode. This results in substantial human intervention to adapt a given code
to a new class of problems.

Navier-Stokes methods solve the Navier-Stokes equations throughout the field. Their numerical
implementation is simpler since a single set of equations applies to all regions of the flow field,
but grid points must be concentrated in the viscous regions to resolve the boundary layer flow.
Since the Navier-Stokes equations describe the physics for most aerodynamic problems, minimal
human intervention is normally required to adapt a given code to a new class of problems.

It is recognized that IBL schemes require much less computer work per grid point 'Md less
computer storage than Navier-Stokes solvers to obtain a solution. However, they are more
specialized and are restricted to computation of attached and mildly separated flows. When
substantial flow separation exists, the less efficient, and more expensive Navier-Stokes methods
must be used.

Hence, Navier-Stokes codes are quite general in their range of application but they are expensive
to run. As a result, most Navier-Stokes codes require improvements to reduce the associated
computational workload. On the other hand, IBL methods are efficient, but the equations used
may not describe the physics of the flow adequately. These codes require improvements to
produce more realistic simulations.

Fortified Navier-Stokes Approach

Over the past decade, NASA Ames researchers used a boundary layer solution as a forcing
function to the Thin Layer Navier-Stokes (TLNS) equations to improve the convergence
characteristics of their Navier-Stokes code. They called this approach "Fortified Navier-Stokes"
(FNS).

UNCLASSIFIED
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Conceptually, a FNS code is a standard Navier-Stokes code which solves the TLNS equations
throughout the computational domain. However, the TLNS equations have been modified to
incorporate approximate solutions (e.g. for a boundary layer equations) in zones where they
cleary apply. As a result, the FNS code can be used in a way similar to an IBL code. An inviscid
solution is obtained by solving the TLNS equations on a coarse grid. Coarseness of the grid
prevents accurate resolution of the viscous terms within the boundary layer region. To recover
this information, the boundary layer equations are solved using a fine mesh overlay near the
airfoil surface, and the solution is impressed on the inviscid solution through a forcing function
term added to the standard TLNS equations. The advantage of a FNS code is that, should the
boundary layer assumption break down, the forcing term can be set to zero and computations can
continue using the conventional Navier-Stokes solution on a refined grid. Steger and Van
Dalsem developed several FNS code versions in 1985111, 1986121 and 198813], which differ by the
form of the boundary layer equations used.

Previous Generalized Boundary Layer Work

Several boundary layer methods (e.g. Cebeci141) employ coordinate transformation, or
"stretching" of the governing equations prior to formulation of the finite difference equations.
The purpose is to scale the growth of the viscous layer so that the new equations, expressed in
terms of similarity variables, may be solved on an approximately rectangular grid. Van Dalsem
and Stegeri5 I took a different approach. They developed a schen-e to solve the two-dimensional,
steady state boundary layer equations in body-conformal coordinates (x,y), which amounts to
solving the equations in physical - instead of similarity - variables. An adaptive grid must then
be used to concentrate a sufficient number of computational points within the boundary layer.
Solution of the equations on a grid with uneven spacing results in complicated finite difference
equations, but this is avoided by transforming the equations to a computational domain with
uniform grid spacing so that standard, unweighted differences can be used.

The scheme of Van Dalsem and Steger is noteworthy for two reasons. First, it assumes the
equations are only weakly coupled when the T, is given. This allows them to solve each
equation independently in a sequential scheme. They also chose their finite difference operators
to allow use of efficient bidiagonal and tridiagonal solvers in the solution process.

Second, their scheme avoids use of complex space marching procedures within separated flow
regions. Instead, the scheme marches in the general downstream direction while flow-dependent
finite difference operators adapt locally to respect the parabolic nature of the boundary layer
equations.

The earlier work of Steger and Van Dalsem 11 ][5 used a predictor-corrector finite difference
approximation to the two-dimensional, steady state equations. They also used three types of
operators depending on the local value of U/Ue. In 1986121 and 19876 1, they expanded the
equations to the three-dimensional unsteady form. They also simplified the formulation to a
single-step process and only two operators dependent on the sign of the contravariant velocity U
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or W. The time variable is not used in a true time fashion, since the method still assumes that the
pressure distribution is fixed and given. Instead, the "time-like" variable is used to relax the
equations. The magnitude of the "time step" affects the convergence rate.

In 1988, Steger and Van Dalsem 31 developed a completely different approach to solving the
boundary layer equations. The boundary layer equations were recast in a form using the
Cartesian velocity components instad of the usual boundary layer components. They can then
be solved on a Cartesian grid, thus, increasing commonality with Navier-Stokes codes.

In the present work, the 1986 version of the generalized boundary layer equations is used. It was
selected because it is simpler to implement than the '988 formulation and will provide a
framework from which to study numerical convergence issues. However, the equations are
scaled differently than in references 3 and 6 to increase their compatibility with Pulliam's 1 71

Navier-Stokes code, ARC2D, with which the current generalized boundary layer code will be
integrated. The equations are also expanded ii sufficient detail for use directly in a computer
program. Handling of the boundary conditions is also presented.
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GOVERNING EQUATIONS

Equations in Body-Conformal Coordinates

We now set to write the two-dimensional form of the unsteady, compressible boundary layer
equations in generalized curvilinear coordinates. We start from th dimensional Cartesian form
of the equations as developed in standard fluid dynamics texts [81

P '= - - +€x "L- + (1.a)

-- L - U- + u(v -_ o(.c)

In addition, we require two constitutive equations: the perfect gas law, and a relation linking
viscosity vaith temperature

p = pRT (1.d)

g = (T) (L.e)

For air, the relation between viscosity and temperature can be expressed by an interpolation
formula based on D.M. Sutherland's theory of viscosityI8, p328 given as

3/2'
i~t To 0+Sj

where .to denotes the viscosity at the reference temperature T0 . S1 is a constant which, for air,
is S I = 110 K. This relation holds true for subsonic and supersonic flow, but not for hypersonic
flow.
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The independent variables x and y are the Cartesian coordinates; thus equation 1 applies to flow
over a flat plate. However, by mapping the Cartesian grid to a body-conformal grid (see fig.l),
the functional form of equation I remains valid as long as the surface has mild curvature (e.g.
the rounded leading ed of an airfoil, but not around the trailing edge). In a body-conformal
grid, the x coordinate is defined as the arc length along a solid surface (or along the dividing
streamline of an airfoil wake), while the y -oordinate is the di,:dance normal to the body surface
(or wake-dividing streamline) and is defined positive in thu outward direction. The Cartesian to
body-conformal mapping of the grid assumes the range of the y coordinates is much smaller than
the range of the x coordinatzs. The difference in arc length between the lines defining the body
surface (y = 0) and the line defining the outer edge of the Cartesian grid (y = Ymax) is negligible.

Cartesian Body-Conformal

Y y
A

X-p X

Figure 1. Cartesian and Body-Conformal Coordinates

In their formulation, Steger and Van Dalsem[21161 use the total enthalpy form of the energy
equation (L.b). This form, derived in Appendix A, is

a H -'atH .+ v  H 3 H P r- I a)(y
at axJ ay[Pr y ay JJ

Non- Dimensional ization of the Equations

To increase compatibility between the generalized boundary layer and Navier-Stokes codes,
equation I is non-dimensicialized with the scaling used by Pulliam171 in ARC2D. Density,
viscosity and temperature are scaled by their freestream values as

- _ _ -r .E
P- 9 -Tp=... .; ; T
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Velocity, enthalpy and pressure are scaled by combinations of the freestream speed of sound
and density as follows

-U - V H - p
a- a. ' a 2 = p a2

Finally, the spacial coordinates are scaled by a reference length (usually the airfoil chord), 1,
and time is scaled by the same quantity divided by the freestream speed of sound, i.e.

X -= Y y t
•- t=

Il/a.

Using the above scaling, equations (l.a-c) retain the same functional form except that the
viscous terms of equations (L.a,b) are now divided by the ratio of Reynolds number to Mach
number, defined as

Re

Note that the formal definition of the Reynolds number uses the freestream velocity u. instead
of the speed of sound a-oo. The standard Reynolds number is obtained by multiplying the above
non-dimensional Re by the Mach number M.. In the remainder of this document, we drop the
for simplicity. The non-dimensional form of equations (l.a-c) is then

au au+LU+ + ---F 1 (2.a)
I at ax ay ax Re ay LayJ

raH aH Hu p Pr - I~) 2b
L- +u ax ayj Re y Pr ay 2 (2.b)

+ a(eu) + a(P) = 0 (2.c)

at ax ay

The equation of state for a perfect gas (l.d) becomes

UNCLASSIFIED
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P = PE (2.d)
Y

where T =- 1 [H (u2 + v2)] and yis the ratio of specific heat ( y= 1.4 for air).

Because of its empirical nature, equation (1.e) cannot be expressed in terms of scaled variables
only. However, if the freestream temperature is given, the following form is obtained

= T 3/2  1 +SlT0 .] (2.e)
T + S1 T J

Generalized Curvilinear Coordinates
A general curvilinear transformation is used to map the body-conformal coordinates (x,y) to
computational coordinates (4,yj), such that spacing in the computational domain is uniform and
of unit length (see fig.2). Equations (2.a-c) are then transformed to general curvilinear
coordinates

T1 = TI(x,y)

and solved on the computational domain using standard unweighted finite differences. The
advantage of this transformation is that a single computational code can be used to solve the flow
about a wide variety of physical geometries.

There normally exists a one-to-one correspondence between the body conformal and
computational spaces. A notable exception is the wake cut when a C-grid geometry is applied to
airfoils (see fig.3). Since the body-conformal space is obtained by "cutting" physical space
along the wake and "unwrapping" it to align the wake centerline and body surface along the
body-conformal x axis, physical points along the wake, including the airfoil trailing edge,
correspond to two boundary points in the computational domain. It is important to choose the
wake points carefully. They should correspond closely to the physical wake centerline.
Application of the boundary conditions for the current boundary layer algorithm is then greatly
reduced, as will be discussed later.
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Body-Conformal Computational

y11

Figure 2. Body-Conformal and Computational Grids

Cartesian C-Grid Computational Grid

"to

FF
IC-

"0 0 -T00 ,f ,..

A

" , A, rot Surface from B to C

10 .j. . . . . . . .F lot

26 00 2S so 7$ 0 lo 20 30

Figure 3. Mapping of C-Grid to Computational Domain

The chain rule is used to express the body-conformal derivatives (a., and ay) of equations (2.a-c)
in terms of the curvilinear derivatives

a= +

a}y = "1071

Transformation of equations (2.a-c) using these derivatives yields
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put + Uu4 + Vu n = -- 1P + Ierly ( 91yu n (3.a)

ptHr+ UH+ VH] = -L[- [yHH + Pr - r ly(u2) (3.b)

P, + '(pu) + Tl,(pu) n + IjY(pv) = 0 (3.c)

where U and V are the contravariant velocities defined as

U= u

V = 4YU + rTYv

The equation of state (2.d) and the Sutherland formula (2.e) are not affected by the
transformation.

Equations (3.a-c) are similar to those of references 3 and 6 with the exception that scaling of the
pressure and viscous terms is changed. In the next section, we apply the 1986 version of the
Steger and Van Dalsem finite difference scheme to the current equations and obtain the finite
difference equations required for coding.
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NUMERICAL FORMULATION

Steger and Van Dalsem12116' developed a time-like algorithm to solve the boundary layer
equations. Their method assumes that pressure is known. This allows decoupling of the
equations which are then solved sequentially at each time step or cycle. Furthermore, the
algorithm was selected so that scalar tridiagonal systems of equations are solved for each
equation. Time derivatives are first-order accurate while spacial derivatives in the momentum
and energy equations are approximated by centered differences in the 1 direction and by flow-
dependent upwind differences in the 4 direction. At any 4 station, the upwind direction is
determined from the sign of the coefficient pU. A backward difference is used if pU is positive
and a forward difference is used if pU is negative.

The term (pv), of the continuity equation is integrated in the 11 direction using the
trapezoidal rule. The 4 and i derivatives for the (pu) terms are approximated by second-order
accurate centered differences.

Details of the algorithm are now presented for each equation, separately, using conventional
operators defined in terms of the shift operator E, e.g.Eku1 uj= Uj±

1 - 1

E+1 - E 1

-= 2A

- E2+ - E. A

and the second-order accurate upwind operator

"3 -E+a'I V4 +[ AI

where a is the convective coefficient pU.

Finally, we use the convention that space or time indices are written only if changed, i.e.
=0 un+1l nI+l'

U-"Uilk, U j= k , etc.
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Momentum Equation

General Form
Within the main field (i.e. away from boundaries), the finite difference form of equation (3.b) is
given by

ptvtun+1 + &^ un+1 + V&1 unlij =-,F,8v + -Ly~ [Iq1y~nu n+J

To be solved numerically, the above equation must be expanded in terms of the numerical
values, which, after rearranging, leads to the following form

2K11,[L (g.Ty) + (P.'1Y)k1 1 n+I-[ Re 2 1U-

+[ p + u ] _[ U- IU 3 + rnl, [ (9t1Y)k-l+ 2(t1y) + (4.t 1Y +1At+ 2 2 2 "Re 2

+[.pVRi, [ (pgqY)+(A'lY)k+'l .n+1 (4.a)

=-- Pj+I -Pj-I U+ IU -4Uj-1 +Uj-2 U-[ U 4Uj+I -Uj+21

ReP 2 JJ2+ -P 2 2

Equation (4.a) is solved implicitly at each station. Thus, a tridiagonal set of equations is
obtained by solving this equation for the points Tj = 2 to il = Tl,.

Use of equation (4.a) near the 4 boundaries is unacceptable numerically. For example, at the
= 1 boundary, the variables Uj-1, j-2 and Pj-1 reference values outside of the numerical

arrays UO and P0. This introduces errors and usually leads to numerical instability. At this
point, it is useful to consider the treatment of equation (4.a) near the boundaries of the
computational domain.

k Boundary Condition
The choice of boundary conditions depends on the flow characteristics of the physical donain
and the choice of grid topology. The C-grid used in the present work extends far enough into the
wake to ensure that outflow conditions exist at the 4 boundaries. This means that forward
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differencing of the pU term is used at 4 = 1 and backward differencing is used at = tmax.
Nevertheless, the numerics require that the second-order accurate upwind operator be modified
at the = 1 - and max points. The modified operators are

=2: V4i o lo V+ A4ot 2

[ [ 3][ E I] + At

+ 2ct 2 +A

max'c [ v 2V4 2

The above modifications to the streamwise convective derivatives ensure that only points within
the computational domain are used. Hence, only first-order differences are used to approximate
inflow derivatives at the 4 = 2 and 4 = ,a_- stations. Dropping the backward difference at the

= I station and the forward difference at the 4 = 4.ax may not be physically acceptable, but it
is necessary numerically. The onus is on the user to make sure that outflow conditions prevail at
these stations.

To test coding of the algorithm, other grid types may be used and inflow conditions may exist at
one of the boundaries. Such is the case for the computation of the flow over a flat plate. In
this case, upstream data must be supplied (e.g. for stations 4 = 1,2 if pU is positive).

Treatment of the pressure terms at the boundaries simply consists of replacing the centered
difference by a forward difference at 4 1 and by a backward difference at = max. Since the
pressure terms are known a priori, they do not affect the tridiagonal nature of the algorithm and
second-order accurate differences are used as follows

P4IiA4 2 4]

p4 CA = SV IF P
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Ti Boundary Condition
Two distinct boundary conditions are applied along the i" = 1 line. The no-slip condition,
(u 1 = 0), is used for points on the surface of the airfoil. Thus, at the Ti = 2 point, equation (4.a) is
expressed as

A 2 U1 +B 2u 2 + C 2u 3 =D 2

k-l uklan",+1 respectively in equation (4.a). D
where A 2 , B 2 , C 2 are the coefficients of u'-1, ul and u r 2
represents the right hand side of the equation. With u I set equal to zero, the first term simply
disappears from the equation.

In the wake, the boundary condition uy II = 0 is used. This derivative may be expressed as a
second-order accurate forward difference in TI, i.e.

uy An [ E+] U n 1 =0

A value for u I in terms of U2 and u 3 is obtained from the above equation. It is substituted in the
coefficient form of equation (4.a) at Tl = 2, which yields

42+B 2 1 U2 + C 2 - 21U 3 =D 2  (4a, 1)
33

Locally, the tridiagonal form of the system of equations is preserved.

At the upper T" boundary (ri = Tlm..), the standard boundary layer edge condition uy 1, is used.
The same logic used to derive the wake centerline boundary condition yields the following
coefficient form of equation (4.a)

AK C- K3 UKm,-I + Btc.,,-l + utmx-l = DKm,,-I (4.a,2)

Inverse Formulation
Near and in regions of reverse flow, the pressure gradient term of equation (4.a) must be
replaced by an inverse forcing function. Steger and Van Dalsem use the wall shear stress, ti,, on
the airfoil surface and the wake centerline velocity, U", in the wake. These expressions are
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obtained by applying the momentum equation at the airfoil surface, which yields the following
relation

_L~ g TI{WYUi~ (5.a)

l + 2 U 2 -U I _Tw

2 2 Y2-YI
Re Y 2-7Y I

Note that u = 0 and that ",, is scaled by . At the wake centerline, the equivalent

relation is

[kL{Piayu2 IU uu~] (5.b)Re TI ]I wc

[ P1+ 92 U2-U

2 Y2-YI pU6uJ
R e Y2-Yl 1l kujWC

where u1 = u,, T, = 0, and U Iw =  uwc

The presence of a u 2 term in the inverse forcing functions results in an augmented tridiagonal
system of equations. Steger and Van Dalsem 141 developed an efficient lower-upper
decomposition scheme to solve this particular system of equations.

Energy Equation

General Form
The finite difference scheme used for the momentum equation is now applied to equation (3.b),
the energy equation. Using the finite difference operators defined previously, we obtain

P[ ~+ +& Hni+ VNHn+ 9, -1 [ Ty8Hn+1 + Pr -IT Yrq(Un+I)2]
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Expanding this equation in terms of the field values, and rearranging to the tridiagonal (in "I)
coefficient form, we obtain

Bou dar + onditions

[ 2~ 2Re P-

+ + P + '' 3 _P 3+ _y--4 ' ] + 2 --] +[ ill 1
Lt 2 22 2Re Pr Pr Pr +J

2 2 R e Pr J L r k l J k+1(4 b

2e 2 P Pr Pr L+Pr Pr

The solution scheme for equation (4.b) is the same as that for equation (4.a). An implicit system
of equations in 71 is solved at each 4 station. Also, the restriction on the numerical values of
Hj±j and Hj±2 near the boundaries are the same as for the momentum equation.

Boundary Conditions
The explanation given for the boundary conditions of the momentum equation also holds true
for the energy equation. Two boundary conditions may be applied along the TI = 1 boundary.
The wall and wake centerline may be specified (Tw and T, given) or adiabatic conditions may
be used ( Ty 1, and Ty 1, set to zero). In the present work, the adiabatic condition is used
throughout the domain which leads to the condition

HyIw = Hy Iwc=O0

or,

{A 2 +B 2 H 2 + C2- 21 H 3 =D 2  (4b,1)
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Continuity Equation

The continuity equation (3.c) is rearranged to isolate the (pv) term on the left-hand side of the
equal sign as follows

(PvI = [ (pu)h + lx(PU)I + PJ

fly

The right-hand side is then a function of the variables p and u alone, which are presumed known.
The trapezoidal rule is used to integrate (pv) in the Ti direction starting from the 11 = 1 line where
v,, is known to be zero on the airfoil, due to the no-slip condition, and v, is assumed to be zero
due to the symmetry condition in the wake, condition which should be satisfied if the wake cut
location is selected carefully. This leads to the folowing finite difference equation

V11 X 8 ~(PU) + I, aq(PU+ I
V (pv)n" +I  Til Ily t-

Expanding the above equation in terms of field variables, we obtain an explicit equation for (pv)

(PV) (pv)kI= (4.c)

[- r ,, _ (pu) , + -2 -[('PU)n+I - (PU)+] +

--([jPU)J+k + (2+-7t 
1

- (PU); '+k-I - (pu)jk-[,PU- 2 -+2]+

Centered differences in and Tj are used throughout the field to approximate the (pu)
derivatives. At the boundaries, centered derivatives are replaced by second-order accurate
forward or backward differences to respect the constraints imposed by the numerical method, i.e.
that only points within the computational domain be used. This includes the following cases:

11 At =1: Replace 8 (pu) by 2 ] (pu)
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[2] At = max: Replace 84(pu) by V4 (pu)

[3] At 1i = 2: Replace N(pu)kl byA 2 J (PU)k-t

Re~acan(u~Y~i[3-E i (pu
[41 At 11 = m:Replace (pu) by V n  2

Application of equation (4.c) to points from Ti = 2 to il = Tlmax yields a bidiagonal system of
equations which is solved using the standard tridiagonal solver. The normal velocity distribution
is finally obtained by dividing the result by the density.

Iterative Scheme

The iterative scheme used in the current implementation is identical to that used by Steger and
Van Dalsem in their 1986-1987 version. It is repeated here for completeness.

[11 Solve the momentum equation (4.a), throughout the computational domain, to yield the u
field at time n+l.

[21 Using the updated values of u (which also affect U and V), solve the energy equation
(4.b) to obtain the H field at time n+l.

[31 Use the u +1 and H' +1 values with the equation of state (2.d) to obtain p .+l.

[41 Integrate the continuity equation (4.c) to get v +1 which is also used to update the
contravariant velocity V.

[51 Update the viscosity field gi using Sutherland's formula (2.e). For turbulent flow, the
Baldwin-Lomax model 91 is also used to update the values of the apparent viscosity t,
due to the Reynolds stresses.

References 3 and 6 are not specific about the method used to sweep the computational field. For
example, it is not clear whether the flow field is swept in the general downstream direction from
the forward stagnation point or if the sweeps are done from one end of the computational field to
the other irrespective of the general flow direction. The equations developed in this paper will
be used to investigate this.
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FUTURE WORK

The finite difference equations approximating the compressible boundary layer equations in two
dimensions have been developed in sufficient detail for use directly in a computer code.
Development of a research code to study the convergence characteristics of these equations is
underway. The iterative scheme outlined in section 3.4 will be used with various techniques to
sweep the computational field.

The effect of the time-like variable used to relax the equations, as well as the treatment of the
convective terms (pU terms) in the momentum and energy equations, are not well understood.
The new code will be used to study the effect of these terms on the overall convergence
characteristics of the algorithm.
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APPENDIX A

Enthalpy Form of the Energy Equation

A rigorous tievelopment of the enthalpy form of the energy equation is done from the full
Navier-Stokes equations. However, in the context of the boundary layer approximation to the
enthalpy equation, the same result is achieved by using equations (1.a,b), which are already
su')ject to the boundary layer assumption.

Our development starts with the addition of equation (1.b) and equation (1.a), the latter being
multiplied by the velocity u as follows

[T a~ T ~T 1 Fau 1u LPCp - U - + V + pu -+- a + +V -
at a y I aItj

a2+ -af + U A Lx - U _x + U -L I U

au au au
We first consider the left-hand side of the above equation. Terms like u -- , u x and u y3(2 2 (u2/2) _(u2/2)

may be expressed as , u and u a(u2 /2) respectively. Using the perfect gasat a x ay

relation h = cp T, the constant cp may be brought into the T derivatives and replaced by h. Total
enthalpy is defined as H = h + (u 2 +v 2 )/2 , but the v 2 term is neglected under the uoundary
layer assumption. Hence the left-hand side of the equation becomes

The right-hand side of the equation is now considered. The u - - terms cancel out. Te K

variable is replaced by its Prandtl number definition K = gcp/Pr. We also make use of the
relation
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4U a(U2/) _ _U

The p---] 2 terms cancel out. Combining the terms within the y derivatives, the right-hand

side of the equation becomes

a 1Icp aT b(u 2/2) + ap
ay Pr y Jat

The constant cp is brought within the T derivative and replaced by the enthalpy. We also add

and subtract the term l /2) within the y derivative. Rearranging, our equation (L.H.S.Pr ay
R.H.S.) becomes

F aH aH aH] _ + Pr -I i~2
+ +vI I -+ 1+-

La--t + v y Pr ay 2 y t

Finally, in the current numerical scheme, the pressure field is used as the forcing function to the

momentum equation. It is assumed known and constant, hence the T term is dropped.
at
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